A multi-scale method for automatically extracting the dominant features of cervical vertebrae in CT images
نویسندگان
چکیده
Localization of the dominant points of cervical spines in medical images is important for improving the medical automation in clinical head and neck applications. In order to automatically identify the dominant points of cervical vertebrae in neck CT images with precision, we propose a method based on multi-scale contour analysis to analyzing the deformable shape of spines. To extract the spine contour, we introduce a method to automatically generate the initial contour of the spine shape, and the distance field for level set active contour iterations can also be deduced. In the shape analysis stage, we at first coarsely segment the extracted contour with zero-crossing points of the curvature based on the analysis with curvature scale space, and the spine shape is modeled with the analysis of curvature scale space. Then, each segmented curve is analyzed geometrically based on the turning angle property at different scales, and the local extreme points are extracted and verified as the dominant feature points. The vertices of the shape contour are approximately derived with the analysis at coarse scale, and then adjusted precisely at fine scale. Consequently, the results of experiment show that we approach a success rate of 93.4% and accuracy of 0.37mm by comparing with the manual results. Keywords—cervical spine; active contour; curvature scale space; turning angle.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملA New Structural Matching Method Based on Linear Features for High Resolution Satellite Images
Along with commercial accessibility of high resolution satellite images in recent decades, the issue of extracting accurate 3D spatial information in many fields became the centre of attention and applications related to photogrammetry and remote sensing has increased. To extract such information, the images should be geo-referenced. The procedure of georeferencing is done in four main steps...
متن کاملStrategy of computed tomography image optimization in cervical vertebra and neck soft tissue in emergency patients
Introduction: Due to the use of ionizing radiation in the CT scan, optimal parameters should be used to reduce the risk of cancer in patients who are constantly exposed to X-rays. The aim of this study was to optimize the parameters used in CT scan of cervical vertebrae and neck soft tissue with minimal loss of image quality Materials and Methods: In this s...
متن کاملMulti-modal vertebrae recognition using Transformed Deep Convolution Network
Automatic vertebra recognition, including the identification of vertebra locations and naming in multiple image modalities, are highly demanded in spinal clinical diagnoses where large amount of imaging data from various of modalities are frequently and interchangeably used. However, the recognition is challenging due to the variations of MR/CT appearances or shape/pose of the vertebrae. In thi...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کامل